设备调度 - 寒武纪 MLU
背景
当前 Koordinator 支持寒武纪卡在 K8s 的使用,基于 koord-device-daemon 和 koordlet 组件上报异构 GPU 资源,将异构卡信息汇总到 Device 中供调度器进行拓扑调度。
使用方法
前置条件
昇腾卡的使用需要提前安装配置如下组件
- 寒武纪 Driver
- 寒武纪 Cambricon Device Plugin (开启虚拟化参数配置)
args:
- --mode=dynamic-smlu # device plugin mode: default, dynamic-smlu, env-share, mim, topology-aware
- --virtualization-num=1 # virtualization number for each MLU, used only in env-share mode, set to 110 to support multi cards per container in env-share mode
- --mlulink-policy=best-effort # MLULink topology policy: best-effort, guaranteed or restricted, used only in topology-aware mode
- --cnmon-path=/usr/bin/cnmon # host machine cnmon path, must be absolute path. comment out this line to avoid mounting cnmon
- --log-level=info # log level: trace/debug/info/warn/error/fatal/panic" default:"info"
- --min-dsmlu-unit=256 # minimum unit for dsmu, used only in dynamic-smlu mode" default:"0" env:"MIN-DSMLU-UNIT"
- Koordinator 相关组件(koordinator >= v1.7.0)
- 需要在 chart 的
scheduler.featureGates参数中加入DevicePluginAdaption=true以启用该功能所需的特性门控
- 需要在 chart 的
使用
- 确认寒武纪卡已成功被 Device 识别,示例如下,通过
kubectl get device <node-name> -o yaml查看 Device 资源。 注意:- node.koordinator.sh/gpu-vendor 对应的标签值为 cambricon
apiVersion: scheduling.koordinator.sh/v1alpha1
kind: Device
metadata:
labels:
node.koordinator.sh/gpu-model: MLU-370 # The model of the Cambricon card.
node.koordinator.sh/gpu-vendor: cambricon # The vendor of the card.
name: node-1
spec:
devices:
- health: true
id: 89033010-2354-0000-0000-000000000000 # The UUID of the Cambricon card (mocked value).
minor: 0 # The minor number of the Cambricon card.
resources:
koordinator.sh/gpu-core: "100" # The total compute capacity of the Cambricon card in percentage.
koordinator.sh/gpu-memory: 24Gi # The total GPU memory of the Cambricon card.
koordinator.sh/gpu-memory-ratio: "100" # The total GPU memory ratio in percentage.
topology:
busID: 0000:47:00.0 # The PCI bus ID.
nodeID: 3 # The NUMA node ID.
pcieID: pci0000:3a # The PCI root ID.
socketID: -1
type: gpu
conditions:
- lastTransitionTime: "2025-04-25T10:00:00Z"
message: device is healthy
reason: DeviceHealthy
status: "True"
type: Healthy
status: {}
- 确认寒武纪的节点上已正确注册寒武纪卡资源信息,示例如下,通过
kubectl get node <node-name> -o yaml查看 node.status.allocatable/node.status.capacity 资源。
apiVersion: v1
kind: Node
metadata:
name: node-1
...
status:
allocatable:
...
koordinator.sh/gpu.shared: "100" # Report by koordinator
koordinator.sh/gpu-core: "100" # Report by koordinator
koordinator.sh/gpu-memory: 24Gi # Report by koordinator
koordinator.sh/gpu-memory-ratio: "100" # Report by koordinator
cambricon.com/mlu.smlu.vcore: "100" # Report by cambricon device plugin
cambricon.com/mlu.smlu.vmemory: "96" # Report by cambricon device plugin
capacity:
...
koordinator.sh/gpu.shared: "100" # Report by koordinator
koordinator.sh/gpu-core: "100" # Report by koordinator
koordinator.sh/gpu-memory: 24Gi # Report by koordinator
koordinator.sh/gpu-memory-ratio: "100" # Report by koordinator
cambricon.com/mlu.smlu.vcore: "100" # Report by cambricon device plugin
cambricon.com/mlu.smlu.vmemory: "96" # Report by cambricon device plugin
- 创建 Pod 申请使用寒武纪卡,样例如下,示例中申请了虚拟卡场景。寒武纪不支持配置多卡虚拟化。
- 注意
- 此处镜像使用了乌班图基础镜像,用户可根据实际需求选择合适的镜像
- resources.limits 和 resources.requests 中均需要额外配置资源
- 虚拟卡场景,以 MLU-370 使用虚拟化为例。
- koordinator.sh/gpu.shared
- 使用虚拟卡填写 1 即可。
- koordinator.sh/gpu-core
- 用多少算力,填写多少即可,百分比表示。
- cambricon.com/mlu.smlu.vcore
- 用多少算力,填写多少即可,百分比表示。
- cambricon.com/mlu.smlu.vmemory
- 用多少显存,比如 1GB,需要换算,填写分片的数量。以每个分片为 256Mi 为例,分片大小在 Cambricon Device Plugin 的
min-dsmlu-unit中配置。slice_count = 1GB / 256Mi。
- 用多少显存,比如 1GB,需要换算,填写分片的数量。以每个分片为 256Mi 为例,分片大小在 Cambricon Device Plugin 的
- koordinator.sh/gpu.shared
- 虚拟卡场景,以 MLU-370 使用虚拟化为例。
apiVersion: v1
kind: Pod
metadata:
labels:
app: demo-sleep
name: test-cambricon-partial
namespace: default
spec:
containers:
- command:
- sleep
- infinity
image: ubuntu:18.04
imagePullPolicy: IfNotPresent
name: demo-sleep
resources:
limits:
cpu: "32"
memory: 64Gi
koordinator.sh/gpu.shared: "1"
koordinator.sh/gpu-memory: "1Gi"
koordinator.sh/gpu-core: "10"
cambricon.com/mlu.smlu.vcore: "10" # percentage
cambricon.com/mlu.smlu.vmemory: "4" # slice counts, actual allocated memory: 4*256Mi=1Gi
requests:
cpu: "32"
memory: 64Gi
koordinator.sh/gpu.shared: "1"
koordinator.sh/gpu-memory: "1Gi"
koordinator.sh/gpu-core: "10"
cambricon.com/mlu.smlu.vcore: "10"
cambricon.com/mlu.smlu.vmemory: "4"
- 进入容器内部(
kubectl exec -it {pod-name} --bash),在容器内部执行ls /dev/cambricon*命令查看卡挂载情况。如果能够正常输出,表示卡已经成功分配到 Pod 中。